Matlab/Freemat/Octave/Scilab: Loops: For and While

If a piece of code needs to be executed repeatedly then a loop structure can be used. In most programming languages, using loops is the means to getting a computer to do any significant work. However, in Matlab/Freemat/Octave/Scilab we must view things slightly differently. Matlab/Freemat/Octave/Scilab is focussed on matrix-vector operations ${ }^{1}$; to used these rather than loop structures - when there is a choice - would lead to more efficient code.

There are two loop structures in Matlab/Freemat/Octave/Scilab the for loop and the while loop. The for loop should be used in cases when the number of loops is known on entry to the loop, if it isn't then the while loop should be used.

The for Loop

In this example j takes the values $1,2,3,4,5$ and $\mathrm{j}^{*} \mathrm{j}$ is output for each values of j .

```
--> for j=1:5
j*j
end
ans =
1
ans =
4
ans =
9
ans =
16
ans =
25
```

In the above example the number step in j from one execution of the loop to the next is one; this is the default value. We can have steps of alternative size. For example in the next piece of code the step size is 2 (placed between the 1 and the 5). In this code j takes the values $1,3,5$.

```
--> for j=1:2:5
j*j
end
ans =
1
ans =
9
ans =
25
```

[^0]The step size in a loop does not have to be a whole number. In the following example the step size is 0.5 .

```
--> for x=1:.5:3
x*x
end
ans =
1
ans=
2.2500
ans =
4
ans =
6.2500
ans =
9
```

The step size in a loop does not have to be positive. In the following example the step size is -1 .

```
--> for j=4:-1:2
j*j
end
ans =
16
ans =
9
ans =
4
```


The while loop

The while loop continues while a condition is met. For example, in the following loop, x is continued to halve until x is no longer greater than 1 and the loop terminates. The while loop must include a logical statement.

```
--> x=10
x =
10
--> while (x>1)
x=x/2
end
x =
5
x =
2.5000
x =
1.2500
x =
0.6250
```


[^0]: 1 Matlab/Freemat: Array Operations - Matrix and Vector Arithmetic

